Improved model-based clustering performance using Bayesian initialization averaging
نویسندگان
چکیده
منابع مشابه
Predicting waste generation using Bayesian model averaging
A prognosis model has been developed for solid waste generation from households in Hoi An City, a famous tourist city in Viet Nam. Waste sampling, followed by a questionnaire survey, was carried out to gather data. The Bayesian model average method was used to identify factors significantly associated with waste generation. Multivariate linear regression analysis was then applied to evaluate th...
متن کاملBayesian Model Averaging of TAN Models for Clustering
Selecting a single model for clustering ignores the uncertainty left by finite data as to which is the correct model to describe the dataset. In fact, the fewer samples the dataset has, the higher the uncertainty is in model selection. In these cases, a Bayesian approach may be beneficial, but unfortunately this approach is usually computationally intractable and only approximations are feasibl...
متن کاملImproving Predictions Using Ensemble Bayesian Model Averaging
We present ensemble Bayesian model averaging (EBMA) and illustrate its ability to aid scholars in the social sciences to make more accurate forecasts of future events. In essence, EBMA improves prediction by pooling information from multiple forecast models to generate ensemble predictions similar to a weighted average of component forecasts. The weight assigned to each forecast is calibrated v...
متن کاملBayesian Additive Regression Trees using Bayesian model averaging
Bayesian Additive Regression Trees (BART) is a statistical sum of trees model. It can be considered a Bayesian version of machine learning tree ensemble methods where the individual trees are the base learners. However for datasets where the number of variables p is large (e.g. p > 5, 000) the algorithm can become prohibitively expensive, computationally. Another method which is popular for hig...
متن کاملBayesian Model Averaging Using the k-best Bayesian Network Structures
We study the problem of learning Bayesian network structures from data. We develop an algorithm for finding the k-best Bayesian network structures. We propose to compute the posterior probabilities of hypotheses of interest by Bayesian model averaging over the k-best Bayesian networks. We present empirical results on structural discovery over several real and synthetic data sets and show that t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics
سال: 2018
ISSN: 0943-4062,1613-9658
DOI: 10.1007/s00180-018-0855-2